平均曲率

编辑
本词条由“百科小编” 建档。
在微分几何中,一个曲面S的平均曲率(meancurvature)H,是一个“外在的”弯曲测量标准,局部地描述了一个曲面嵌入周围空间(比如二维曲面嵌入三维欧几里得空间)的曲率。这个概念由索菲·热尔曼在她的著作《弹性理论》中最先引入。令p是曲面S上一点考虑S上过p的所有曲线Ci。每条这样的Ci在p点有一个伴随的曲率Ki在这些曲率Ki中,至少有一个极大值与极小值这两个曲率称为S的主曲率。的平均曲率是两个...

在微分几何中,一个曲面 S 的平均曲率(mean curvature)H,是一个“外在的”弯曲测量标准,局部地描述了一个曲面嵌入周围空间(比如二维曲面嵌入三维欧几里得空间)的曲率。

概述

编辑

这个概念由索菲·热尔曼在她的著作《弹性理论》中最先引入。

定义

编辑

令p是曲面S上一点考虑S上过p的所有曲线Ci。每条这样的Ci在p点有一个伴随的曲率Ki在这些曲率Ki中,至少有一个极大值

与极小值

这两个曲率

称为S的主曲率。

的平均曲率是两个主曲率的平均值(斯皮瓦克 1999, 第3卷,第2章),由欧拉公式其实也是所有曲率的平均值,故有此名。

利用第一基本形式与第二基本形式的系数,平均曲率表示为:

这里 E,F,G 是第一基本形式的系数,L,M,N 为第二基本形式的系数。平均曲率可推广为更一般情形 (斯皮瓦克 1999, 第4卷,第7章),一个超曲面 T 的平均曲率为:

更抽象地说,平均曲率是第二基本形式(或等价地,形算子)的迹。另外,平均曲率 H 可以用共变导数

写成

这里利用了高斯-Weingarten 关系,

是一族光滑嵌入超曲面,

为单位法向量,而gij 是度量张量。一个曲面是极小曲面当且仅当平均曲率为零。此外,平面 S 平均曲率满足一个热型方程称为平均曲率流方程。

维空间中曲面

编辑

对 3 维空间中的曲面,平均曲率与曲面的单位法向量相关:

这里法向量的选取影响曲率的正负号。曲率的符号取决于法向量的方向:如果曲面“远离”法向量则曲率是正的。上面的公式对 3 维空间中任何方式定义的曲面都成立,只要能够计算单位法向量的散度。对曲面是两个坐标的函数定义的曲面,比如

,使用向下的法向量平均曲率(的两倍)表示为如果曲面还是轴对称的,满足

,则

平均曲率

流体力学

编辑

流体力学中使用的另外一种定义是不要因子 2:

这出现于杨-拉普拉斯方程中,平衡球状小滴内部的压力等于表面张力乘以 Hf;两个曲率等于小滴半径的倒数

极小曲面

编辑

Costa 极小曲面示意图一个极小曲面是所有点的平均曲率为零的曲面。经典例子有悬链面、螺旋面、Scherk 曲面与 Enneper 曲面。新近发现的包括 Costa 极小曲面(Costa's mimimal surface,1982年)与 Gyroid(Gyroid,1970年)。

平均曲率极小曲面的一个推广是考虑平均曲率为非零常数的曲面,球面和圆柱面就是这样的例子。Heinz Hopf 的一个问题为是否存在曲率为非零常数的非球面闭曲面。球面是惟一具有常平均曲率且没有边界或奇点的曲面;如果允许自交,则存在平均曲率为非零常数的闭曲面,Wente 在1986年曾构造出这样的自交环面(陈维桓 2006, 4.6节)。

参见

编辑

高斯曲率平均曲率流逆平均曲率流面积公式第一变分

内容由百科小编提供,本内容不代表globalbaike.com立场,内容投诉举报请联系全球百科客服。如若转载,请注明出处:https://globalbaike.com/415284/

(112)
词条目录
  1. 概述
  2. 定义
  3. 维空间中曲面
  4. 流体力学
  5. 极小曲面
  6. 参见

轻触这里

关闭目录

目录