玻色子

编辑
本词条由“百科小编” 建档。
玻色子是依随玻色-爱因斯坦统计,自旋为整数的粒子。玻色子不遵守泡利不相容原理,在低温时可以发生玻色-爱因斯坦凝聚。玻色子(英语:boson)是遵循玻色-爱因斯坦统计,自旋量子数为整数的粒子。玻色子不遵守泡利不相容原理,多个全同玻色子可以同时处于同一个量子态,在低温时可以发生玻色-爱因斯坦凝聚。和玻色子相对的是费米子,费米子遵循费米-狄拉克统计,自旋量子数为半整数(1/2,3/2,……)。物质的基本...

玻色子是依随玻色-爱因斯坦统计,自旋为整数的粒子。玻色子不遵守泡利不相容原理,在低温时可以发生玻色-爱因斯坦凝聚。

基本内容

编辑

简介

玻色子(英语:boson)是遵循玻色-爱因斯坦统计,自旋量子数为整数的粒子。玻色子不遵守泡利不相容原理,多个全同玻色子可以同时处于同一个量子态,在低温时可以发生玻色-爱因斯坦凝聚。和玻色子相对的是费米子,费米子遵循费米-狄拉克统计,自旋量子数为半整数(1/2,3/2,……)。物质的基本结构是费米子,而物质之间的基本相互作用却由玻色子来传递。

分类

胶子- 强相互作用的媒介粒子,自旋为1,有8种光子- 电磁相互作用的媒介粒子,自旋为1,只有1种W 及Z 玻色子- 弱相互作用的媒介粒子,自旋为1,有3种引力子- 引力相互作用的媒介粒子,自旋为2,只有1种,尚未被发现希格斯玻色子- 据香港《文汇报》14日报道,欧洲核子研究中心(CERN)日前公布了来自大型强子对撞器(LHC)的重要数据,显示“可能看到”有“上帝粒子”之称的希格斯玻色子(Higgs boson)。该理论可解释粒子为何拥有质量,从而演化为万事万物。人类距离了解宇宙诞生之谜或许将要迈进一大步。介子- 由两个费米子——夸克组成的强子。由偶数个核子组成的原子核。因为质子和中子都是费米子,故含偶数个核子的原子核是自旋为整数的玻色子。声子- 请参阅固体物理学按照结构,可以分成基本粒子和复合粒子。基本玻色子有传递基本相互作用的胶子、光子、Z、引力子以及给其他基本粒子提供质量的希格斯粒子。复合玻色子由偶数个费米子组成,常见的有介子、氘[dāo]核、氦-4等。按照自旋和宇称量子数,可以分成标量、赝标量、矢量和轴矢量粒子等。胶子-强相互作用的媒介粒子,质量为零,电中性,自旋量子数为1,有8种。Z 玻色子-弱相互作用的媒介粒子,自旋量子数为1。W玻色子有两个,分别带正、负一个电子电量,质量约为80.4GeV。Z玻色子有一个,不带电,质量约为91.2GeV。引力子-量子引力理论中传递引力相互作用的媒介粒子,质量为零,电中性,自旋量子数为2,只有1种,尚未被发现。希格斯玻色子(Higgs boson)- 又称为“上帝粒子”,在GSW电弱统一理论中引起规范对称性自发破缺并给其他基本粒子提供质量的自旋量子数为0的基本粒子,质量约为125GeV。2012年7月被欧洲核子中心(CERN)的大型强子对撞机(LHC)实验发现。介子- 由一个正夸克和一个反夸克组成的强子,常见的有π、ρ、K等。氘核、氦-4等由偶数个核子组成的原子核。因为质子和中子都是费米子,故含偶数个核子的原子核是自旋为整数的玻色子。声子-请参阅固体物理学

命名

玻色子(bosons):保罗·狄拉克为了纪念印度物理学者萨特延德拉·纳特·玻色的贡献,因此给出玻色子的命名。玻色子,在相互作用中不守恒的基本粒子,其行为遵守1920年由萨蒂恩德拉-玻色(Satyendra bose,1894——1974)和阿尔伯特爱因斯坦发展的“玻色——爱因斯坦统计法”的统计规则。典范的玻色子是光子,即光的粒子,每次点亮一盏灯,就产生大量的光子。

玻色子1924年,印度物理学家萨特延德拉·纳特·玻色(Satyendra Nath Bose)将电磁辐射作为光子气体来描述,考虑到全同粒子的不可分辨性和几率解释,建立了基于量子力学的光子气体的统计规律,得到了普朗克的黑体辐射公式。玻色的论文在投稿时被拒绝,后来求助于爱因斯坦。爱因斯坦意识到玻色这个工作的重要性,他将文章翻译成德文后发表在德国的Zeitschrift für Physik杂志上。随后爱因斯坦也在此领域做了研究工作,发展和推广了玻色的工作,因此人们把这个统计方法叫做玻色-爱因斯坦统计。1945年,著名物理学家保罗·狄拉克(Paul Dirac)为了纪念玻色在量子统计中的开创性贡献,将遵循玻色-爱因斯坦统计规律的粒子命名为玻色子。利用玻色——爱因斯坦统计法,将电磁辐射作为光子“气体”来描述,无需再利用辐射的波动性,就能够预言黑体辐射的所有性质。这是量子世界波粒二象性之一例。波粒二象性认为,光子或电子等实体既能用波也能用粒子来描述。玻色子是量子理论中负责传递力的粒子。比如,电磁力可以描述为两个带电粒子:如一个电子和一个质子之间交换光子,好像两个足球运动员之间的传球。按照量子物理学的说法,玻色子的关键特性是它的自旋。所有玻色子的自旋要么是零要么是整数1、2、3等等。这有点像小孩子的陀螺的旋转,但又不完全像陀螺的旋转,因为一个像电子这种带半整数自旋的粒子必须“旋转”两次才能回到它起始状态。玻色子(boson) 是依随玻色-爱因斯坦统计,自旋为整数的粒子。不遵守泡利不相容原理,在低温时可以发生玻色-爱因斯坦凝聚。符合玻色-爱因斯坦统计:由全同玻色子组成的孤立系统,处于热平衡时,分布在能级εi的粒子数为,Ni=gi/(e^(α+βεi)-1)。α为拉格朗日乘子;β=1/(kT),由体系温度,粒子密度和粒子质量决定。εi为能级i的能量,gi为能级的简并度。遵从玻色-爱因斯坦统计的微观粒子。玻色子的自旋为0或整数,例如光子、π介子等。由玻色子或偶数个费米子组成的复合粒子的自旋也是0或整数,因而它们也是玻色子。欧洲核子研究中心(CERN)昨日(2011年12月13日)公布来自大型强子对撞器(LHC)的重要数据。该理论解释粒子为何拥有质量,从而演化为我们身边的万事万物,如果这一粒子被确认,那将是100年来人类最伟大的发现之一。

规范

量子场论表明,粒子之间的基本相互作用是通过交换某种粒子来传递的,即基本相互作用都是由媒介粒子传递的,这类媒介粒子统称为规范玻色子。传递引力相互作用的媒介子是引力子g,是引力场量子,它是自旋为2的零质量粒子。2012年7月2日,美国能源部下属的费米国家加速器实验室宣布,该实验室最新数据接近证明被称为"The God Particle"的希格斯玻色子的存在。

类型

胶子- 强相互作用的媒介粒子,自旋为1,有8种,胶子是传递夸克之间色相互作用的媒介粒子,是“色场”的量子。两个不同色状态的夸克通过胶子紧密地结合在一起,所以胶子必定是双色的。

玻色子

希格斯玻色子假想图

光子- 电磁相互作用的媒介粒子,自旋为1,只有1种。g和中间玻色子(w+、w-及z0)分别是电磁相互作用和弱相互作用的媒介子,在电弱统一理论中,这四种粒子都是电弱作用的场量子,它们都是零质量的粒子。但是由于对称性的破缺,只有一种媒介子(g光子)保持了零质量,而其他三种获得了巨大的质量。致使对称性破缺的机制,称为希格斯(higgs)机制。所以理论上确信,必定还存在一种被称为希格斯粒子的粒子。这些基本粒子在宇宙中的“用途”可以这样表述:构成实物的粒子(轻子和重子)和传递作用力的粒子(光子、介子、胶子、W和Z玻色子)。在这样的一个量子世界里,所有的成员都有标定各自基本特性的四种量子属性:质量、能量、磁矩和自旋。

粒子自旋

这四种属性当中,自旋的属性是最重要的,它把不同种粒子王国分成截然不同的两类,就好像这个世界上因为性别将人类分成了男人和女人一样意义重大。粒子的自旋不像地球自转那样是连续的,而是一跳一跳地旋转着的。根据自旋倍数的不同,科学家把基本粒子分为玻色子和费米子两大类。费米子是像电子一样的粒子,有半整数自旋(如1/2,3/2,5/2等);而玻色子是像光子一样的粒子,有整数自旋(如0,1,2等)。这种自旋差异使费米子和玻色子有完全不同的特性。没有任何两个费米子能有同样的量子态:它们没有相同的特性,也不能在同一时间处于同一地点;而玻色子却能够具有相同的特性。基本粒子中所有的物质粒子都是费米子,是构成物质的原材料(如轻子中的电子、组成质子和中子的夸克、中微子);而传递作用力的粒子(光子、介子、胶子、W和Z玻色子)都是玻色子。

希格斯

人们早已发现,自然界中物体之间千差万别的相互作用,可以简单划分为4种力:即引力、电磁力、维持原子核的强作用力和产生放射衰变的弱作用力。在爱因斯坦的相对论解决了重力问题后,人们开始尝试建立一个统一的模型,以期解释通过后3种力相互作用的所有粒子。

玻色子

质子高速对撞后产生希格斯玻色子的瞬间

经过长期研究和探索,科学家们建立起被称为“标准模型”的粒子物理学理论,它把基本粒子(构成物质的亚原子结构)分成3大类:夸克、轻子与玻色子。“标准模型”的出现,使得各种粒子如万鸟归林般拥有了一个共同的“家园”。但是这一“家园”有个致命缺陷,那就是该模型无法解释物质质量的来源。为了修补缺陷,希格斯提出了希格斯场的存在,并进而预言了希格斯玻色子的存在。他假设希格斯玻色子是物质的质量之源,是电子和夸克等形成质量的基础。其它粒子在希格斯玻色子构成的海洋中游弋,受其作用而产生惯性,最终才有了质量。标准模型预言了62种粒子的存在,并基本上都已被实验多证实,希格斯玻色子是最后一种未被发现的基本粒子。由此可见,希格斯玻色子是大自然中本身就有的,并不是制造出来的。有了希格斯玻色子,统一理论就完全成立了,将有更多的世间万象因此而被认知,科学的世界也就毫无疑问的更加完美。有人因此将希格斯玻色子比做粒子物理学领域的“圣杯”。

中间矢量

intermediate vector boson

玻色子

大型强子对撞机生成的第一张图

传递弱相互作用的矢量粒子。早在 20世纪 40 年代曾提出弱作用通过中间玻色子W±传递的思想。60年代电弱统一理论提出除了带电的中间玻色子W±外,还可能存在中性的中间玻色子Z0。1973年实验上观测到中性弱流存在,是对电弱统一理论的重要支持。理论上预言中间玻色子质量为80吉电子伏特(GeV)左右,寿命短于10-17秒。1983年先后观测到W±粒子和Z0粒子,W±粒子质量为80.8GeV,Z0粒子的质量为92.9GeV。根据后来实验测得的数据,得到W±粒子和Z0 粒子的质量m和衰变宽度Γ 的实验值分别为mw= 80.3GeV,mz=91.163GeV;Γw=2.20GeV,Γz =2.537GeV。根据衰变宽度可算出它们的寿命为10-25秒量级。

费米子

编辑

概述

粒子按其在高密度或低温度时集体行为的不同可以分成两大类:一类是费米子,得名于意大利物理学家费米,另一类是玻色子,得名于印度物理学家玻色。区分这两类粒子的重要特征是自旋。自旋是粒子的一种与其角动量(粗略地讲,就是半径与动量的乘积)相联系的固有性质。量子力学所揭示的一个重要之点是,自旋是量子化的,这就是说,它只能取普朗克常数的整数倍(玻色子,如光子、介子等)或半整数倍(费米子,如电子、质子等)。

玻色子费米子和玻色子遵循完全不同的统计规律。前者遵循的费米-狄拉克统计,其中一个显着和特点,就是1925年瑞士科学家泡利发现的“泡利不相容原理”,即在一个费米子系统中,绝不可能存在两个或两个以上在电荷、动量和自旋朝向等方面完全相同的费米子。这就像电影院里的座位,每座只能容纳一个人。而玻色子则完全不同,一个量子态可以容纳无穷多个玻色子。因此,也只有玻色子才可能出现玻色-爱因斯坦凝聚现象。例如,锂的两种同位素锂6和锂7分别为费米子和玻色子。图片分别显示在810、510和240nk时锂6和锂7原子气和原子云照片。我们可以看到,锂7(左)随着温度的降低所占的尺寸变小,也就是发生了凝聚,而锂6(右)的尺寸则保持稳定,不发生凝聚。这是因为泡利不相容原理的限制,使两个费米子不可能在同一时间占据同一个空间。正因如此,白矮星最终只能在引力作用下坍[tān]塌到一个极限尺寸而不再进一步缩小。

编辑参阅

费米子玻色-爱因斯坦统计规范玻色子

内容由百科小编提供,本内容不代表globalbaike.com立场,内容投诉举报请联系全球百科客服。如若转载,请注明出处:https://globalbaike.com/415292/

(474)
词条目录
  1. 基本内容
  2. 简介
  3. 分类
  4. 命名
  5. 规范
  6. 类型
  7. 粒子自旋
  8. 希格斯
  9. 中间矢量
  10. 费米子
  11. 概述
  12. 编辑参阅

轻触这里

关闭目录

目录