太阳高度角(英文名:solar elevation angle,其他英文名有:solar altitude,sun’s altitude),又称太阳高度,是指太阳光线与地平面的夹角。太阳高度是决定地球表面获得太阳热能数量的最重要的因素。当太阳高度角为90°时,太阳辐射强度最大;当太阳斜射地面时,太阳辐射强度就小。
定义
编辑太阳高度角简称太阳高度(其实是角度)。太阳高度是决定地球表面获得太阳热能数量的最重要的因素。我们用h来表示这个角度,它在数值上等于太阳在地球地平坐标系中的地平高度。
一般时间
太阳高度角随着地方时和太阳的赤纬的变化而变化。太阳赤纬(与太阳直射点纬度相等)以δ表示,观测地地理纬度用φ表示(太阳赤纬与地理纬度都是北纬为正,南纬为负),地方时(时角)以t表示,有太阳高度角的计算公式:sin h= sin φ sin δ+cos φ cosδ cos t
正午时间
日升日落,同一地点一天内太阳高度角是不断变化的。时角是以正午12点为0度开始算,每一小时为15度。即14点和10点分别为30度和-30度。日出日落时角度都为0,正午时太阳高度角最大(90°),时角为0,以上的公式可以简化为:
正午太阳高度角
sin h=sin φ sin δ+cos φ cos δ由两角和与差的三角函数公式,可得sin h=cos(φ-δ)因此,对于太阳位于天顶以北的地区而言,h=90°-(φ-δ);对于太阳位于天顶以南的地区而言,h=90°-(δ-φ);二者合并,因为无论是(φ-δ)还是(δ-φ),都是为了求当地纬度与太阳直射纬度之差,不会是负的,因此都等于它的绝对值,所以正午太阳高度角计算公式:h=90°-|φ-δ|具体计算:还是举个例子来推导,假设春分日(秋分日也可,太阳直射点在赤道)某时刻太阳直射(0°,120°E)这一点,120°E经线上各点都是正午。对于(0°,120°E)这点来说,它离太阳直射点的纬度距离是0°,它的太阳高度角就是90°。另外一个观测点,(1°N,120°E)与太阳直射点的纬度差为1°此时,这一点的太阳高度角为89°(根据上面的公式h=90°-|φ-δ|)。
太阳高度角计算
(1°S,120°E)与太阳直射点的纬度差也是1°。因此,当地的太阳高度角也是89°同一时刻,下列各观测点,报告的太阳高度角度数如下:南北纬2°(与太阳直射点相距2°):88°(=90°-2°)南北纬3°(与太阳直射点相距3°):87°(=90°-3°)南北纬10°(与太阳直射点相距10°):80°(=90°-10°)南北纬30°(与太阳直射点相距30°):60°(=90°-30°)南北纬80°(与太阳直射点相距80°):10°(=90°-80°)南北纬90°(与太阳直射点相距90°):0°(=90°-90°)
赤纬算法
编辑上述式子中都涉及太阳赤纬,太阳赤纬的算法如下:由于太阳赤纬角在周年运动中任何时刻的具体值都是严格已知的,所以它(ED)也可以用与式(1)相类似的表达式表述,即:ED=0.3723+23.2567sinθ+0.1149sin2θ-0.1712sin3θ-0.758cosθ+0.3656cos2θ+0.0201cos3θ(5)式中θ称日角,即 θ=2πt/365.2422(2)这里t又由两部分组成,即 t=N-N0 (3)式中N为积日,所谓积日,就是日期在年内的顺序号,例如,1月1日其积日为1,平年12月31日的积日为365,闰年则为366,等等。N0=79.6764+0.2422×(年份-1985)-INT〔(年份-1985)/4〕(式中INT表示取整数部分,例如INT(3.25)=3)
意义
编辑在晨昏线上的各地太阳高度为0 °,表示正经历昼夜更替;在昼半球上的各地太阳高度大于0°,表示白昼;在夜半球上的各地太阳高度小于0°,表示黑夜。
变化规律
编辑1、纬度变化规律:由太阳直射点所在经纬度向南北两侧递减。可推知与太阳直射点的纬度相差一度,正午太阳高度角就减小一度。(进一步可得出:已知某一正午太阳高度角,一般有两条纬线等于此度数)。例如:太阳直射20°N,这天全球正午太阳高度角就从20°N向南北两侧逐渐递减,19°N的正午太阳高度角就等于89°。即19°N的正午太阳高度=90°-(太阳直射点-该地纬度)=90°-(20°-19°)=89°2、季节变化规律:太阳直射点移来时渐增,移去时渐减(太阳直射点相对某地所在纬线而言)。例如:对于31°N的地区,在12月22日(冬至日)至6月22日(夏至日)这段时间,正午太阳高度角渐增,6月22日(夏至日)至12月22日(冬至日)这段时间,正午太阳高度角渐减。小结:1、整个南或北半球,正午太阳高度角能同时达全年最小值(该半球的冬至日),但不能同时达全年最大值;2、南北回归线之间的地区,太阳直射时达全年最大值,而非该半球的夏至日;3、南北回归线上一年一次最大值(该半球的夏至日)和最小值(该半球的冬至日);南北回归线之间的地区一年两次最大值(太阳直射时)、一次最小值(该半球的冬至日),但赤道一年各两次;4、回归线以外的地区,一年各一次最大值(该半球的夏至日)和最小值(该半球的冬至日)。
发展历程
编辑2015年9月11日开始的全国大学生数学建模竞赛中,其中本科组A题太阳影子定位涉及到了此概念。2016年5月18日开始的东南大学本科生数学建模竞赛中,其中B题的太阳影子定位涉及到了此概念。2016年8月18日开始的青岛科技大学数学建模培训中,其中第五题的太阳影子定位涉及到了此概念。
内容由百科小编提供,本内容不代表globalbaike.com立场,内容投诉举报请联系全球百科客服。如若转载,请注明出处:https://globalbaike.com/415312/